skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Louie, Stacey M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The adsorption of foulants on photocatalytic nanoparticles can suppress their reactivity in water treatment applications by scavenging reactive species at the photocatalyst surface, screening light, or competing for surface sites. These inhibitory effects are commonly modeled using the Langmuir-Hinshelwood model, assuming that adsorbed layer compositions follow Langmuirian (equilibrium) competitive adsorption. However, this assumption has not been evaluated in complex mixtures of foulants. This study evaluates the photoreactivity of titanium dioxide (TiO2) nanoparticles toward a target compound, phenol, in the presence of two classes of foulants ─ natural organic matter (NOM) and a protein, bovine serum albumin (BSA) ─ and mixtures of the two. Langmuir adsorption models predict that BSA should strongly influence the nanoparticle photoreactivity because of its higher adsorption affinity relative to phenol and NOM. However, model evaluation of the experimental phenol decay rates suggested that neither the phenol nor foulant surface coverages are governed by Langmuirian competitive adsorption. Rather, a reactivity model incorporating kinetic predictions of adsorbed layer compositions (favoring NOM adsorption) outperformed Langmuirian models in providing accurate, unbiased predictions of phenol degradation rates. This research emphasizes the importance of using first-principles models that account for adsorption kinetics when assumptions of equilibrium adsorption do not apply. 
    more » « less
  2. Titanium dioxide (TiO 2 ) nanoparticles have been widely studied for water treatment applications; however, natural organic matter (NOM) is often reported to hamper the efficiency of the nanoparticles toward the degradation of target pollutants. Phosphate treatment has been proposed as a potentially facile solution to this problem, as phosphate competes for TiO 2 surface sites to diminish the NOM adsorption. However, the potential importance of the conditions of the NOM exposure and the residual NOM remaining after phosphate treatment have not been fully explored. Here, we investigate the reactivity of phosphate-treated TiO 2 nanoparticles with NOM coatings adsorbed from two background water chemistries, deionized water (TiO 2 –NOM DIW ) and moderately hard water (TiO 2 –NOM MHW ). Thorough characterization by size exclusion chromatography revealed that the adsorbed NOM was only partially displaced after phosphate treatment, with a higher adsorbed mass and wider variety of NOM species persisting on TiO 2 –NOM MHW compared to TiO 2 –NOM DIW . Although the remaining adsorbed NOM did not significantly influence the degradation rate of phenol as a model pollutant, remarkably distinct effects were observed in the degradation of catechol as an oxidative byproduct of phenol, with TiO 2 –NOM MHW hindering catechol degradation and TiO 2 –NOM DIW accelerating catechol degradation. The suppressed reactivity for TiO 2 –NOM MHW was attributed to hindrance of the physical adsorption of catechol to the TiO 2 surface by the NOM MHW layer as well as changes in the reactive oxygen species profile as measured by electron paramagnetic resonance (EPR) spectroscopy, whereas the enhanced reactivity for TiO 2 –NOM DIW was attributed to higher hole formation, suggesting participation of the NOM DIW layer in electron transfer processes. This research highlights the critical importance of the NOM surface coating in directing the mechanisms for pollutant degradation in photocatalytic nano-enabled water treatment applications. 
    more » « less
  3. null (Ed.)
    Polymeric nanoparticles represent one major class of nanomaterials that has been proposed to improve the sustainability of agricultural operations by delivering organic agrochemicals such as pesticides more efficiently. Polymeric nanoparticles can improve efficiency through improved targeting and uptake, slow release, and lower losses of the chemicals, while also conferring the benefits of biodegradability and biocompatibility. This review provides a tutorial to environmental nanotechnology researchers interested in initiating research on the development and application of polymeric nanocarriers for delivery of agrochemicals, including pesticides and growth promoters for crops and antibiotics for livestock. In particular, this review covers the wider suite of methods that will be required beyond those typically used for inorganic metal or metal oxide nanoparticles, including synthesis of custom polymeric nanocarriers and characterization and tuning of agrochemical loading and release profiles. Benefits of polymeric nanocarriers are then discussed in terms of the physicochemical properties and fate and transport behaviors that contribute to higher efficiency and lesser environmental impacts compared to traditional (non-nano) formulations. Finally, opportunities for environmental nanotechnology researchers to collaborate with material scientists, microbiologists, and agricultural scientists to optimize the development of polymeric nanocarriers for agriculture are discussed. 
    more » « less